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A procedure for determining the ground state eigenvalue and eigenfunction of the 
Sturm-Liouville equation with periodic boundary conditions has been developed. 
This procedure is based on Picard's method, which, through the use of Chebyshev 
polynomials, provides for an efficient computational scheme. 

I .  I N T R O D U C T I O N  

The problem considered here is that of  determining the ground state eigenvalue, 
E, and the eigenfunction, y(x), which is a solution to the Sturm-Liouville equation, 

y" + (E -- V(x)) y ---- 0, (1) 

subject to periodic boundary conditions. An appropriate change of  the independent 
variable allows these conditions always to be written as 

and 

y(1) = y ( - -  1) (2a) 

y'(1) ---- y ' ( - -  1). (2b) 

V is a known periodic and piecewise continuous function of  the independent 
variable. 

The proposed procedure can be viewed as a modification of the iteration method 
of Picard. For  computer applications, this approach is superior to those in which 
approximations are taken to certain orders, since once the mathematical technique 
is developed, the final accuracy depends on the number of  iterations. No modi- 
fication of  the expressions need be made in order to improve the accuracy. A 
further advantage is that the initial approximation may in all cases be y ---- constant. 
Thus, in order to proceed, no previous operations are required. 
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II. MATHEMATICAL FORMULATION 

In order to integrate Eq. (1) it is convenient to express y and V as series in x. For 
the range --1 ~ x ~ l, the Chebyshev polynomials may be chosen [1]. These 
polynomials are defined by 

Tn = cos(n arccos x), (3) 

which gives T o = 1 and 7"1 = x. A trigonometric identity applied to Eq. (3) 
produces the general recursion relation 

2T.T~ = T,.+. + I",._.. 

The orthogonality relations are 

(4) 

I zr/2 m = n @ 0 cJ 
[ T~T~(1 -- xZ)-l/~dx = ]zr m = n - - 0  (5) 
J . _  

l t O  m @ n .  

In the procedure, y is represented by a Chebyshev series 

Y = Z a .Tn,  (6) 

where the sum is from n = 0 (unless otherwise noted by a constant which appears 
under the summation sign) to M, the largest Chebyshev term specified. As 
previously noted, the iteration procedure begins with y = a0 ; all later expressions 
for y will contain the complete series. The product Vy can be expressed as 

Vy = E b .Tn ,  (7) 

and Eq. (1) can now be written as 

y" = - -E  ~ anT. + Z b, ,T. .  (8) 

This equation is formally integrated using the following properties of the Chebyshev 
polynomials 

2 f T~ dx = T,~+I Tn-1 (9a) 
n + l  n - - 1  ' 

(9b) f r~ dx = x(r~  - -  To), 
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The constant that results from integrating T1 is combined with the constant of  
integration into one constant, c. The result is a new Chebyshev series 

y'  = e -- E ~. , fnT.  q- ~_, g . T . .  (10) 
1 1 

At this point, all coefficients on the right side of Eq. (10) are known with the 
exceptions of  e and E. The value of E is obtained from the periodic boundary 
conditions on y'.  Equating y'(1) with y ' ( - -  1) in Eq. (10) eliminates c and all even 
polynomials, giving 

E = Z" g . / Z ' f ~ ,  (11) 
1 1 

where Y'.' indicates a sum over odd n only. Here use has been made of  the fact that 

T.(1) = T.(--1)  n even, (12) 

and 

T,(1) ---- --Tn(--1)  n odd. (13) 

With E thus determined, it is possible to combine the coefficients --Efn and gn 
into one coefficient, hn �9 Equation (10) is then written " 

y'  = c -t- ~ hnT,~ (14) 
1 

with c undetermined. The integration of Eq. (14) yields 

y = ao -t- alx -I- ~ n n r n ,  (15) 
2 

where H ,  is directly constructed from h~ by means of Eqs. (9). The constant of  
integration and the To term from the integration of the 7"1 have been combined 
into a0. Also, the constant a~ includes c and a contribution from the integration 
of  the h2 term in Eq. (14). At this point the values of a0 and a~ are not known. Once 
they are determined, however, a new expression for y is ready for the next iteration 
cycle, with the identification 

(new) an : Hn n : 2, 3 .... (16) 

This notation will now be employed. 
The value of a~ is obtained from the periodic boundary conditions on y. Setting 

y(1) : y(--1)  in Eq. (15) will eliminate a0 and all the even Chebyshev polynomials, 
yielding 

al : -- ~ '  an.  (17) 
3 
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Finally, ao is obtained by working with Eq. (1). Equation (15) is differentiated twice 
to give 

y" = E a.z; ; .  (18) 
2 

The direct use of Eq. (15) gives 

and 

Ey = Eao + E ~ anT,, (19) 
1 

-Vy = - Z Z v.T a.r., (20) 

where the Chebyshev expansion coefficients of V are designated as vm. Equation (1) 
is now obtained by the direct addition of Eqs. (18)-(20) in the form 

a,~Tg + Eao + E ~ a,Tn -- ~ ~ v~TmanTn = 0. (21) 
2 1 

This is solved for ao by multiplying Eq. (21) by (1 -- x2) -a/~ and integrating from 
- -  1 to 1. The use of the orthogonality relation, Eq. (5), and the fact that 

yields 

f_l (1 -- X~)-l/2 I~  = l~ "'/2) 
l(,rr n 3 n even 

dx 
1 ~ v  n odd, 

-~ nSan + zrEao -- ZrVoao -- "~- anvn = O, 

(22) 

(23) 

where Z"  implies a sum over even n. The only unknown in Eq. (23) is ao which is 
now evaluated. In the special case, however, where V(x) is an antisymmetric 
function, both E and v0 along with both sums in Eq. (23) are zero in the initial 
cycle which leaves a0 undetermined. In this particular situation, ao may be set 
equal to the sum of the absolute values of the Chebyshev coefficients. This choice 
of the constant guarantees that the next approximation will have no nodes, a 
characteristic of the ground state solution. 

At this point, all coefficients an in Eq. (6) have been determined and the cycle may 
be reinitiated. The process is repeated until convergence to within the desired limits 
occurs. Normalization is not necessary, but it can be easily included in the 
procedure. 
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III. NUMERICAL ANALYSIS ASPECTS 

In the procedure outlined previously, it is necessary to expand one function, V, 
in Chebyshev polynomials. The coefficients in this expansion, 

are given by 

V = Vo + v~T~ + v~T~ + "" + v , .T , . ,  

1 
v, = A f ]  (1 -- x2)-1/~ TnV dx, 

1 

(24) 

(25) 

where A is the normalization factor (see Eqs. (5)). 
The numerical evaluation is accomplished by Gauss-Chebyshev integration [2]; 

that is, use is made of the quadrature formula 

N 

f ~" ~ F(xk), (26) 1 (I -- x2)-1/2 F dx = ~ k=l 
--1 

x~ = cos Q~ (27) 

2k -- 1 
Qk -- 2 ~  zr. (28) 

where the points x~ are given by 

with 

The advantages of employing a Chebyshev representation now become readily 
apparent. First, the quadrature points are easily calculated by Eqs. (27) and (28), 
and all have the same weighing factor of zr/N. Consequently, no input tables are 
required. Secondly, the polynomials themselves are directly evaluated at the sum- 
mation points, xk, by 

T,(xk) = cos(nQk), (29) 

which follows from Eqs. (3) and (27). The accuracy inherent in Gaussian quadrature 
is always a distinct advantage. The error term associated with Eq. (26) is 
2~rF(2N)2-2N(2N!) -1 where F (2m is the 2Nth derivative of F evaluated at some point 
within the range. The error in the integration itself can be eliminated from consi- 
deration by taking N sufficiently large, say N = 2M. To increase the overall 
accuracy, it is only necessary to increase the number of terms kept. 

The integration by Gaussian quadrature is rather slow, but it is required only 
once to obtain the coefficients in Eq. (24). Since the expansion coefficients of y are 
known from the previous cycle, the coefficients of the expansion of the product 
required by Eq. (7) is readily constructed by means of Eq. (4). The computational 
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scheme gains efficiency from the fact that the Chebyshev series representation of 
either the integration of a Chebyshev series or the product of two Chebyshev 
series is easily obtained. After the initial expansion, therefore, each cycle is a 
sequence of operations with the known coefficients. 

IV. EXAMPLES 

Two examples are presented below. The first, the Mathieu equation, is an 
important differential equation in physics and engineering. The second example 
illustrates the technique for transforming an equation containing a first derivative 
term into the standard form of Eq. (1). In both cases, the calculations were 
performed using double precision on an IBM 360, Model 40 until the change in 
the eigenvalue was less than 1 x 10 -8. Twenty-four terms in the Chebyshev 
expansion were retained (M = 24) and the number of integration points used was 
forty-eight (N = 48). The computer required 0.7 seconds for an iteration. 

A. Mathieu Equation 

The Mathieu equation [3], 

y" -k (a -- 2q cos 2z) y = 0, (30) 

has period ~r in z. The change of the independent variable, 

~rx = 2z, (31) 

transforms the boundary conditions into the form of Eqs. (2) and produces the 
identification 

E = �88 (32) 

In the test case, the particular choice 

q ----- 2/zr 2 (33) 

was taken, and now Eq. (30) reads 

y" -k ( E -  cos zrx)y = 0. (34) 

The ground state eigenvalue of Eq. (30) can be calculated by a series expansion [3], 
and, for this choice of q, Eq. (34) corresponds to a value of E given by 

E = --0.050435182. (35) 
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The routine converged in 14 cycles to the above value. Of the twenty-four 
Chebyshev terms used, the last ten had values less than 1 x 10 -8. The odd terms 
are theoretically zero in the case of  a symmetric V; they were computed to be less 
than 1 x 10 -12. 

B. An Equation Containing the First Derivative 

Consider the equation, 

z" + P(x) z' + (E -- O(x)) z = 0, (36) 

subject to the periodic boundary conditions z(1) = z(--1) and z'(1) = z '(--1) and 
where P and Q are periodic. The transformations, 

y = exp [1 f p dx]z (37) 

and 

1 dP 1 p2 (38) 
V - - 2  dx + ~ +Q,  

permit Eq. (36) to be immediately written in the standard form given by Eq. (1). 
The boundary conditions are again given by Eq. (2). Note that the eigenvalue is 
unaffected by the transformation. 

The particular case taken is 

z" + (cos zrx) z' + (E + ~ sin zrx) z = 0. 

The ground state solution of Eq. (39) can be written as 

with 

(39) 

z = 1 + A sin zrx (40) 

A = - -17r  -t- �89 2 -Jr- 4)  1/2, 

and the corresponding eigenvalue is 

E = --rrh = --0.91514456. 

The above transformation of  Eq. (39) produces 

(40 

(42) 

y" + (E + 3/2 rr sin rrx -- I cos27rx) y = 0. (43) 

The computed result converged to the above value after 65 cycles. In this example, 
the last five of the twenty-four Chebyshev terms were less than 1 • 10 -8. 
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V. CONCLUSION 

The method presented here gives a straightforward way of  obtaining the solutions 
and ground state eigenvalue of  a Sturm-Liouville equation with periodic boundary 
conditions. It is not necessary to have any prior knowledge of  the solution in order 
to initiate the iteration process. The degree of accuracy obtained is determined 
by the number of iterations performed and the number of  terms kept in the 
Chebyshev expansions. A program based on this method would allow both to 
be specified as input data. Accuracy, therefore, becomes a matter of computer time 
since no modification of  the general procedure is required. 
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